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In experiments, Plesniak, Mehta & Johnson (1994) have noted that curved two-stream
mixing layers are susceptible to centrifugal instabilities under the condition that the
slower of the streams curves towards the faster one; this condition is analogous to
the concave curvature condition for the stability of the flow over a plate. The modes
which arise manifest themselves as vortices aligned with the dominant flow direction.
Previous numerical and analytical work has elucidated the structure of these vortices
within incompressible mixing layers; Otto, Jackson & Hu (1996). In this paper we
go on to investigate the rôles of compressibility and heating in determining the
streamwise fate of Görtler vortices within these situations.

The development of the disturbances is monitored downstream and curves of
neutral stability are plotted. The effect of changing the Mach number and free-stream
temperatures is studied in detail. It is found that for certain parameter régimes modes
can occur within convexly curved, or ‘stable’ mixing layers; these ‘thermal modes’
have no counterpart within incompressible mixing layers. By making use of a large
Görtler number analysis we are able to verify our numerical results, and derive a
very simple condition which yields information about the parameter ranges for which
certain modes are likely to occur. As an aside this method can be used to show
that no degree of wall cooling will allow sustained growth of Görtler vortices within
boundary layers over convex plates.

1. Introduction
It has been seen in numerous studies that the rôle of compressibility is important

in many flow situations; Gutmark, Schadow & Yu (1995) and Mack (1984). The
flow in high-powered jet engines, involving the mixing of fuel and air, is one specific
case. The inclusion of compressibility effects when studying these fluid flows naturally
increases the complexity of the resulting systems. For certain parameter régimes formal
asymptotic reductions can be used to generate relatively simple eigenvalue problems.
However, there are certain situations where no suitable asymptotic framework can be
determined, and in these problems recourse needs to be made to numerical methods.

Plesniak, Mehta & Johnson (1994, 1996) investigated curved two-stream mixing
layers and they showed that the presence of centrifugal force promoted the evolution of
streamwise vortices (the reader is referred to the other numerous experimental studies
cited in these articles). Experiments were carried out with both initially untripped
and tripped turbulent boundary layers. Only the untripped case exhibited sustained
organized streamwise vorticity. The higher growth rate of the mixing layer seen in this
case is attributed to the presence of spatially stationary streamwise vortices, which
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are seen to provide extra entrainment, as Bell & Mehta (1990) showed for a plane
mixing layer.

Due to the natural shape of their velocity profiles, mixing layers can sustain inviscid
travelling-wave instabilities. It is known that these inflectionally driven modes occur
almost instantaneously downstream of a splitter plate and will cause the two streams
to start mixing, Karasso & Mungal (1997). One interesting question is whether
centrifugal effects can promote mixing, either directly or via the modification of the
inherent inviscid modes, Otto (1995).

The occurrence of streamwise vortices within boundary layers on concave plates
was initially predicted by Görtler (1940). The modes take the form of pairs of
streamwise-orientated counter-rotating vortices which are self-evidently periodic in
the spanwise direction. Görtler and many other subsequent authors fallaciously
considered the underlying flow to be independent of the downstream coordinate. The
full inclusion of non-parallel flow effects was first presented by Hall (1982), where
a formal asymptotic framework was laid down. Therein the normal and spanwise
coordinates were rescaled on the thickness of the boundary layer in order to capture
the vortex mechanism. The Görtler number, a parameter representing the level of
centrifugal effects, is introduced and defined to be G = 2δRe1/2, with δ a measure of
curvature of the layer and Re the Reynolds number defined in the usual way (we take
Re � 1). It is assumed that δ is sufficiently small so that as the Reynolds number
increases, the Görtler number is fixed and of order one. Hall (1982) considered the
large-G limit but with G � Re. As the modes evolve downstream they are known
to maintain their spanwise wavelength, (1/a), and hence it is pertinent to consider a
high-wavenumber limit when normalizing with respect to the layer thickness.

In order to characterize the overall stability of a flow it is necessary to describe the
shape of the neutral curve; this determines when a mode will be unstable. We can
use an asymptotic analysis to determine the location of the right-hand branch of the
neutral curve, which is a good gauge of the stability of a situation. The extent of the
gap between the right- and left-hand branches of the neutral curve is equivalent to the
coalescence or otherwise of the upper and lower branches of a Tollmien–Schlichting
neutral curve for large Reynolds numbers. The fact that a flow is inviscidly unstable
implies that the upper and lower branches are distinct which is congruous to the
circulation condition derived herein. It is known that the right-hand branch of the
neutral curve is characterized by G ∼ a4. An expansion for the Görtler number in
terms of the wavenumber was found by Hall, and this was continued to the point
at which non-parallel effects first appeared. The right-hand branch asymptote was
compared to previous parallel-flow approximations and experimental findings; Hall
(1982).

For the O(1) scaled wavenumber problem (that is modes with wavelengths com-
parable with the boundary-layer thickness) with G = O(1) also, there is no suitable
reduction of the equations, which means that one is required to solve the full system
of partial differential equations, as opposed to ordinary differential equations. For
this régime, Hall (1983) numerically tracked the progress of the modes downstream
within a Blasius boundary layer over a concave curved plate. If the curvature of the
plate was convex it was found that the square of the circulation does not decrease
anywhere as you move away from the plate (Rayleigh’s circulation criterion) and
thus there is no centrifugal instability. The effect of changing the initial form and
location of the disturbance was investigated, and it was found that the structure
far downstream remained unchanged. It was also seen that no unique neutral curve
existed, which demonstrates the difficulty experienced in achieving repeatability in
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experiments for Görtler vortices, Swearingen & Blackwelder (1987). The asymptotic
results of Hall (1982) were plotted against the right-hand branch of the neutral curves,
and good agreement was obtained. The corresponding compressible investigation was
carried out by Wadey (1992), wherein the effect of wall cooling was investigated. It
was seen that the right-hand branch of the neutral curve moved to the left as the
wall was cooled; see Elliott & Bassom (2000) for a full account of the rôle of wall
cooling in determining the structure of Görtler vortices. An increase in free-stream
Mach number also moved the right-hand branch of the neutral curve to the left, thus
diminishing the range over which modes are unstable.

The régime G � 1 and a = O(1) was investigated by Denier, Hall & Seddougui
(1991) for an incompressible boundary layer. It was found that inviscid Görtler
vortices could be sustained within this flow situation. The corresponding compressible
study was carried out by Dando & Seddougui (1991). Here it was found that different
types of instability modes existed. There was a wall-layer mode, and for large Mach
numbers a mode was shown to exist in a temperature adjustment layer. It has
been seen in these compressible studies that an increase in the Mach number of
the flow tended to lead to a more stable flow. This is a result that is in common
with the majority of compressible flows which are susceptible to Tollmien–Schlichting
instabilities, Mack (1984) (see however Sarkies & Otto (1999) for a counter-example).

The evolution of centrifugal instabilities within curved incompressible mixing layers
has been studied theoretically and numerically in many papers. Hu, Otto & Jackson
(1994) and Liou (1994) showed that curvature had little effect on the inflectional
Rayleigh modes. However, the presence of curvature permits an unstable three-
dimensional mode which will become the prominent mode as the scaled streamwise
wavenumber decreases (this corresponds to reverting to the centrifugal case for which
this wavenumber is effectively zero). Otto, Jackson & Hu (1996) presented both an
analytical and numerical study. The existence of unstable modes was shown to be
largely dependent on the slower stream curving into the faster one. Vortices akin to
these modes have been studied within the atmosphere, Scorer & Wilson (1963) and
Scorer (1997). These structures arise within curved flows occurring due to gravity,
Otto, Stott & Denier (1999): they are thought to be a possible mechanism for
generating ‘clear-air turbulence’ within the atmosphere. The analytical part of Otto
et al. (1996) was concerned with inviscid and viscous right-hand branch modes in a
high Taylor/Görtler number régime. It was also noted that the fastest growing mode
found by Denier et al. (1991) in the incompressible boundary-layer problem was not
present in the curved mixing layer. In the numerical part of Otto et al. (1996) the
parabolic vortex equations were integrated and marched in the downstream direction.
The wavenumber was taken to have an O(1) value, as was the Görtler number. It was
found that as the difference between the free-stream speeds increased the layer became
more susceptible to centrifugal instabilities. Growth of the modes was also observed
when the mixing layer curves towards the slower stream, although the growth rate
was positive for very short streamwise distances: this transient growth is commented
upon in Plesniak et al. (1994). It was also seen that a change in the initial perturbation
only served to alter the base of the neutral curves and not the ultimate downstream
behaviour.

Owen, Seddougui & Otto (1997) completed a similar study to Hall (1982) (and
also to the analytical part of Otto et al. 1996) for a compressible mixing layer. As
well as finding modes that have counterparts in the incompressible problem herein
referred to as ‘conventional modes’, Owen et al. (1997) found a new class of modes
which do not exist in the incompressible problem; these ‘thermal modes’ arise when
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a significantly cooler and slower stream curves away from a faster stream (which
is analogous to convex curvature). It is worth noting that both of these classes of
modes owe their existence to the presence of centrifugal force, the main difference
being that the ‘conventional modes’ are driven by velocity shear, whereas the ‘thermal
modes’ are sustained by thermal gradients. Plots showing the asymptotic location of
the right-hand branch for changes in the Mach number and free-stream temperature
ratio were given. These results are reproduced and extended in this paper to show
agreement with numerical calculations. Similar modes have been shown to occur
within shear layers with a deficit in velocity due to a wake component, Zhuang
(1999), and in boundary and mixing layers where a degree of buoyancy is allowed,
Stott & Denier (1998) and Otto et al. (1999).

We exploit the high-wavenumber limit of the inviscid problem to gain some very
useful information pertaining to the ranges of free-stream temperature and velocity
ratios for which these modes persist. It happens that the ratio of stream speeds used
in most of Owen et al. (1997) was fortuitous. Far downstream, the modes become
localized within a certain region, and Owen et al. (1997) determined where within
the mixing layer this was located. This knowledge can be used to glean whether
centrifugal instabilities could enhance or inhibit mixing. It was anticipated that if the
mode resided around the centreline, then mixing would be enhanced.

In Owen, Seddougui & Otto (1998), which follows the incompressible study of
Seddougui & Otto (1995), the nonlinear structure of the centrifugal instabilities was
investigated. The calculation was affected in the parameter régime corresponding to
the neighbourhood of the right-hand branch of the neutral curve. The nonlinear
structure of the ‘thermal modes’ was given along with a consideration of the effect of
the nonlinear modes on the inherent inviscid modes, Michalke (1964). It was found in
both papers that the predominantly velocity-driven mode had the effect of reducing
the temporal growth rates of the inviscid Rayleigh modes. However, Owen et al.
(1998) found that the presence of the thermal modes produced a destabilization of
the inviscid modes, see Otto, Sarkies & Denier (2000).

The focus of this paper is to investigate the effect of compressibility on centrifugal
instabilities which are known to reside in curved compressible mixing layers. (Some
preliminary work has been reported on in Sarkies & Otto 1998.) In § 2 the basic
flow and the linear stability equations are formulated. In § 3 a summary of the
asymptotic structures of the inviscid and the viscous right-hand branch modes is
discussed. We include the derivation of a condition which can be used to predict
when a situation will be prone to certain modes. Comparisons are made between
the full numerical solutions and the asymptotic predictions in § 4. Finally, in § 5 we
present our conclusions, and mention the work that has been undertaken as a natural
extension of this study. Suggestions for other areas of future exploration are also
discussed.

2. Formulation
2.1. Basic flow

The flow profile with which we are concerned occurs within a compressible mixing
layer. This flow comprises two streams of different properties, meeting at the end of
a splitter plate. It should be noted that not only may the two streams have differing
velocities, but also different temperatures. We denote the velocity and temperature
of the lower stream by U−∞ and T−∞ respectively, and those of the upper stream by
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Figure 1. Schematic of the flow situation. In this article we shall consider βu > 1 so that the upper
stream is always the faster.

βuU−∞ and βtT−∞, figure 1. Our attention is restricted to βu > 1 so that the upper
stream is always faster; there is a simple correspondence with the results for βu < 1.

The entire configuration is bounded above and below, with the width of the con-
taining channel taken to be L. The Reynolds number is defined as Re = U−∞L/ν−∞,
where ν−∞ is the kinematic viscosity of the lower stream. We exploit the dimensional
coordinate system (x∗, y∗, z∗), where x∗ is the distance along the centreline of the layer,
y∗ is normal to the centreline and z∗ completes the orthogonal triad, see figure 1.
The centreline of the mixing layer has curvature (1/R)χ(x∗/L), with R the radius
of curvature. We use the convention that positive χ denotes a concave curvature
(curving upwards), whereas negative χ implies a convex curvature (this being fixed by
the geometry of the problem). The result of transforming into this coordinate system
is the occurrence of extra terms in the normal-momentum equation. We define the
Görtler number as in the introduction, with δ = L/R. The assumption that δ � 1
implies that the width of the containing channel is narrow compared to the radius of
curvature.

To obtain the basic flow it is necessary to solve the energy, state, conservation
of mass and compressible Navier–Stokes equations. The equation of state is taken
to be that for an ideal gas. The thickness of the mixing layer, which is known to
increase downstream, is O(Re−1/2) and we rescale the normal velocity and lengthscale
accordingly. The spanwise coordinate will also be rescaled as the Görtler vortex
mechanism operates on a scale of O(Re−1/2) in this direction.

The basic flow in a two-dimensional mixing layer takes the form

u = U−∞[ū(x, y), Re−1/2v̄(x, y), 0][1 + O(Re−1/2)].

The bar denotes a basic-flow quantity and the rescaled coordinates are

x = x∗/L, y = y∗Re1/2/L, z = z∗Re1/2/L,

which are now in non-dimensional form. We also non-dimensionalize the density,
viscosities, pressure and temperature with respect to their values in the lower stream,
so that

ρ∗ = ρ−∞ρ, µ∗ = µ−∞µ, λ∗ = λ−∞λ,

p∗ = ρ−∞U2−∞p, T ∗ = T−∞T ,

where an asterisk represents a dimensional quantity and λ is the second coefficient
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of viscosity. This expresses to what extent the density changes with pressure, and is
obtained from Stokes’ relation, which in non-dimensional form is λ + 2

3
µ = 0. We

take p̄ = 1/(γM2−∞) (with M−∞ = U−∞/a−∞ the Mach number of the lower stream,
where a−∞ is the speed of sound in the lower stream) so that ρ̄ T̄ = 1, from the
equation of state. We also assume that the fluid obeys Chapman’s linear viscosity
law which relates temperature to viscosity (µ = cHT in non-dimensional form). For
this study Chapman’s law was seen to be an adequate model for the temperature
dependence of viscosity. However, for flows which are supersonic or hypersonic in
nature, Sutherland’s law may be more applicable. For a detailed discussion on the
choice of viscosity model, the reader is referred to Blackaby (1991). Later in the study
we take cH to be unity for simplicity. This may have rendered the viscosity law slightly
inaccurate in the cases where there are large temperature differences, see Rasmussen
(1994). In these cases, it can be seen that in the relevant temperature range, the value
of cH can be chosen to match closely with Sutherland’s law. This being the case,
we do not see the use of Chapman’s law as overly restrictive. We take the Prandtl
number to be 0.72, which corresponds to air, although some use of a Prandtl number
of unity is made in order to make analytical progress. (Numerical solutions are given
for both values.)

To aid analysis we employ the Howarth–Dorodnitsyn transformation,

Y =

∫ y

0

ρ̄(x, y) dy,

which leads to equations that are in a similar form to those for an incompressible
flow. Now, if we let X = x we find that

∂

∂x
→ ∂

∂X
+
∂Y

∂x

∂

∂Y
and

∂

∂y
→ ρ̄

∂

∂Y
.

We introduce the stream function ψ(X, Y ) such that

ū =
∂ψ

∂Y
and v̄ = −1

ρ

(
∂ψ

∂X
+
∂Y

∂x
ū

)
,

which implies that the conservation of mass equation is automatically satisfied.
We look for self-similar solutions and accordingly define the similarity variable
η = Y /

√
X, so that the spreading of the mixing layer is accounted for. The stream

function is taken to be ψ(X, η) =
√
X f(η). We note that

∂Y

∂x
=

1

2
√
XT̄

∫ η

0

η̃
∂T̄

∂η̃
dη̃,

as given in Stewartson (1964). The velocity components are now of the form

ū =
∂f

∂η
and v̄ =

1

2
√
X

{
T̄

(
η
∂f

∂η
− f
)
− ∂f

∂η

∫ η

0

η̃
∂T̄

∂η̃
dη̃

}
,

where f satisfies the Blasius equation

∂3f

∂η3
+ 1

2
f
∂2f

∂η2
= 0. (1)

The above equation is solved in the region (−∞,∞) and requires three boundary
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conditions. Two of these arise from prescribing the streamwise velocities at ±∞:

∂f

∂η
(∞) = βu and

∂f

∂η
(−∞) = 1.

For the third boundary condition, Lock (1951) proposed that the normal velocity
at the centreline should be zero, giving f(0) = 0 and Ting (1959) derived a set of
boundary conditions by matching pressure terms to higher order across the mixing
layer. In dimensional form, the condition mainly used here is given by

ρ̄(∞)ū(∞)v̄(∞)√
1−M2∞

+
ρ̄(−∞)ū(−∞)v̄(−∞)√

1−M2−∞
= 0,

where M∞ = βuM−∞/
√
βt (this is the condition given in Ting (1959) applicable to the

case of the combination of two subsonic streams). It was noted by Klemp & Acrivos
(1972) that the analysis of Ting does not hold for a subsonic/subsonic mixing layer
where the streams are semi-infinite in extent. In such a case the location of the dividing
streamline is indeterminate. However, if the streams are bounded, the pressure across
the mixing layer will not balance identically and a similar analysis to that presented
by Ting (1959) will hold. Comments are given in Owen et al. (1997) on the effect of
considering a Lock rather than a Ting boundary condition: the mode locations are
found to be slightly shifted, but the growth rates remain largely unchanged.†

The temperature is found by integrating the energy equation and for arbitrary
Prandtl number, σ, it is given by

T̄ = 1 +B
∫ η

−∞

(
∂2f

∂η2
(η1)

)σ
dη1

−M2
−∞(γ − 1)σ

∫ η

−∞

(
∂2f

∂η2
(η1)

)σ ∫ η1

−∞

(
∂2f

∂η2
(η2)

)2−σ
dη2 dη1,

Stewartson (1964). It is noted that if the Prandtl number σ = 1, then the temperature
can be found by considering the total enthalpy. Note also that for σ > 2 the above
formula needs to be rewritten, effectively changing the order of integration in the
final term. The constant B is obtained after applying the first of the two boundary
conditions,

T̄ (∞) = βt, T̄ (−∞) = 1,

and is found to be

B =

{
βt − 1 +M2

−∞(γ − 1)σ

∫ ∞
−∞

(
∂2f

∂η2
(η1)

)σ ∫ η1

−∞

(
∂2f

∂η2
(η2)

)2−σ
dη2 dη1

}/
∫ ∞
−∞

(
∂2f

∂η2
(η1)

)σ
dη1.

The second boundary condition is satisfied by virtue of the choice of the lower limits
of the integrals. We now proceed to introduce perturbations into the flow.

† It is worth noting at this point that many papers concerning mixing layers exploit the so-called
‘hyperbolic tangent profile’, for which

ū =
βu + 1

2
+
βu − 1

2
tanh η,

and the temperature can be found in terms of the enthalpy.
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2.2. Disturbance equations

The basic state is perturbed in such a way that we can investigate the susceptibility
to centrifugal instabilities of curved compressible mixing layers. It is noted that
the normal and spanwise coordinates are scaled on the mixing-layer thickness; the
velocity components in these directions are also scaled. These rescalings result in
terms representing the downstream evolution of the mixing layer being present at
leading order in the equations. There is no reason to neglect these in favour of a
parallel-flow approach, and thus a normal-mode investigation, such as that given in
Floryan & Saric (1979) for incompressible flow over a concave plate, is not viable. It
is noted from Plesniak et al. (1994) that the instabilities have a vortex structure and
so the total flow, uT , is expressed in the form

uT = u+ ∆[ũ(x, y), Re−1/2 ṽ(x, y), Re−1/2 w̃(x, y)]eiaz,

where ∆ is a vanishingly small parameter, so that the resulting analysis is linear. The
other flow quantities are perturbed in a similar manner so that

[p, T , ρ, µ] = [p̄, T̄ , ρ̄, µ̄] + ∆[Re−1p̃(x, y), T̃ (x, y), ρ̃(x, y), µ̃(x, y)]eiaz.

Substituting these perturbations into the equations of motion and linearizing we
arrive at the following disturbance equations:
conservation of mass

∂

∂x

(
ũ

T̄

)
+

∂

∂y

(
ṽ

T̄

)
+

ia

T̄
w̃ − ∂

∂x

(
ūT̃

T̄ 2

)
− ∂

∂y

(
v̄T̃

T̄ 2

)
= 0, (2a)

streamwise momentum

L1,1(ũ) =
ũ

T̄

∂ū

∂x
+
ṽ

T̄

∂ū

∂y
− T̃

T̄ 2

(
ū
∂ū

∂x
+ v̄

∂ū

∂y

)
− ∂

∂y

(
T̃
∂ū

∂y

)
, (2b)

normal momentum

L4/3,1(ṽ) =
ũ

T̄

∂v̄

∂x
+
ṽ

T̄

∂v̄

∂y
+
χ

T̄
Gūũ− T̃

T̄ 2

(
ū
∂v̄

∂x
+ v̄

∂v̄

∂y
+
χ

2
Gū2

)
+
∂p̃

∂y
− ∂

∂x

(
T̄
∂ũ

∂y

)

− ∂

∂x

(
T̃
∂ū

∂y

)
+

∂

∂y

(
2

3
T̄
∂ũ

∂x
+

2

3
T̄ iaw̃

)
+

∂

∂y

(
2

3
T̃
∂ū

∂x
− 4

3
T̃
∂v̄

∂y

)
− iaT̄

∂w̃

∂y
,

(2c)

spanwise momentum

L1,4/3(w̃) = iap̃− ∂

∂x
(T̄ iaũ)− ∂

∂y
(T̄ iaṽ) +

2

3
iaT̄

(
∂ũ

∂x
+
∂ṽ

∂y

)
+

2

3
iaT̃

(
∂ū

∂x
+
∂v̄

∂y

)
,

(2d)
and energy

L1/σ,1/σ(T̃ ) =
ũ

T̄

∂T̄

∂x
+
ṽ

T̄

∂T̄

∂y
− ūT̃

T̄ 2

∂T̄

∂x
− v̄T̃

T̄ 2

∂T̄

∂y
− 1

σ

∂

∂y

(
T̃
∂T̄

∂y

)

−M2
−∞(γ − 1)

[
T̃

(
∂ū

∂y

)2

+ 2T̄
∂ū

∂y

∂ũ

∂y

]
, (2e)
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where we have defined the operator

Lα,β(φ) = α
∂

∂y

(
T̄
∂φ

∂y

)
− βa2T̄φ− ū

T̄

∂φ

∂x
− v̄

T̄

∂φ

∂y
.

We have taken the Chapman constant, cH , to be unity (as mentioned earlier, it may
be pertinent in cases where large temperature gradients occur to choose a different
value of cH ). The appropriate boundary conditions are

ũ, ṽ,
∂ṽ

∂y
, T̃ → 0 as y → ±∞.

These ensure that the perturbations remain within the mixing layer. It is seen that
the scalings introduced to capture the vortices result in the above equations being
parabolic in nature. This characteristic is crucial when deciding on a procedure to
solve the system. It is possible to impose an initial perturbation at a certain streamwise
location, and then integrate the system downstream. The methods employed to solve
the disturbance equations are presented in the next section.

2.3. Numerical methods

It is worth reiterating that the disturbance equations no longer contain the streamwise
diffusion terms. This is because of the disparity in lengthscales in the streamwise, and
the normal and spanwise directions. We note that the streamwise pressure gradient of
the perturbation is scaled out of the streamwise-momentum equation, which means
that the system is parabolic. The disturbance equations can be solved by marching in
the downstream direction. First, the normal- and spanwise-momentum equations are
combined to eliminate the pressure terms. The conservation of mass equation is then
used to eliminate w̃ terms, which leads to a fourth-order equation to solve for ṽ, as in
the corresponding incompressible problem, Hall (1983) (with an additional second-
order equation corresponding to the energy equation). For the sake of brevity we shall
not present these equations here; however they are given in Sarkies (1998). It is found
to be prudent to exploit the similarity and Howarth–Dorodnitsyn transformations
in the numerical scheme. Hall (1983) gives a discussion on the choice of the initial
conditions, and also suggests the use of the similarity transformation. In the similarity
coordinate the basic-flow calculations can be greatly reduced, and the grid naturally
spreads with the mixing layer.

The numerical approach used a standard second-order finite difference scheme in
the normal coordinate and a Crank–Nicholson scheme in the downstream coordinate.
The finite difference grid in the normal coordinate was stretched in order to decrease
computational expense, with outer limits at Y = ±40(X1/2). The normal coordinate is
also elongated or contracted as a result of the Howarth–Dorodnitsyn transformation.
This all means that we have coupled tri-diagonal matrices to solve for ũ and T̃ ,
and a further coupled penta-diagonal matrix for ṽ at each downstream station. We
evaluated w̃ using the conservation of mass equation. The procedure followed was
to impose an initial perturbation, given later, and then step downstream. At each
x-station, we solved for ũ, then T̃ and finally ṽ, using the most up-to-date functions
available at the time. Then at the same x-station we use a simple iteration on these
three equations until ũ is within a certain tolerance of the previous iterate. The whole
procedure is then repeated, stepping downstream. This means that the scheme is
fully implicit unlike that used by Wadey (1992), which relieves any limitation on the
streamwise step lengths imposed due to numerical stability requirements.

To investigate the stability of the flow we monitor the energy of the disturbance,
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quantified by

E(x) =

∫ y=∞

y=−∞
ũ2(x, y) dy =

√
x

∫ η=∞

η=−∞
T̄ ũ2(x, η) dη =

√
xE1(x),

as the modes progress downstream, Otto et al. (1996). Another energy measure we
could have used was that employed by Hall (1983) and Wadey (1992). The integrand
would then be ũ2 + ṽ2 + w̃2 rather than ũ2. This results in a minimal change to the
growth rate and the corresponding neutral curves. The growth rate

ς(x) =
E1x

E1

+
1

2x

is calculated for a particular wavenumber and we are able to determine the neutral
point or points, xn, where ς(xn) = 0.

We study the effect of differing temperature ratios and Mach number. For all cases,
curves of neutral stability are obtained by plotting the local wavenumber (ax = ax1/2)
against the local Görtler number (Gx = Gχx3/2) where ς(x) = 0. It is seen that as we
progress downstream (i.e. as x increases) both the local Görtler number and the local
wavenumber increase.

The initial conditions used are

ũ = (U+ 2(η − η̃)2)e−(η−η̃)2

, ṽ = 0, T̃ =M(T+ 2(η − η̃)2)e−(η−η̃)2

.

This choice is made after consideration of Otto et al. (1996). In that paper other
initial conditions were tried, including the case when ṽ 6= 0 (which represents an initial
perturbation with some degree of streamwise vorticity). We note that η̃ specifies the
initial vertical location of the disturbance. For the majority of this paper we take
U = T = 5, η̃ = −5 and M = 0; the variation of these parameters (including the
use of M 6= 0, depicted in figure 16) only changes the base of the neutral curve. The
choice η̃ = −5 is made so that the disturbances are initially centred within the slower
stream; similar results are obtained for other values. Before presenting the solutions
to these equations it is instructive to consider the large Görtler number limit of (2)
for both order-one and high-wavenumber modes.

3. Far-downstream structure
3.1. Inviscid Görtler vortices

In this section we shall give a summary of the results of Owen et al. (1997) and
extend some of their calculations. We derive a relatively simple condition that can
be used to predict which modes a given situation will be prone to. As mentioned in
the previous section the local Görtler number and local wavenumber both increase
as the modes progress downstream, which is a direct consequence of the natural
thickening of the mixing layer. Consequently, we shall discuss the structure of modes
in situations with high Görtler numbers. In mixing-layer calculations this divides into
two main régimes, and there is a direct matching between these, Otto et al. (1996).
If one considers modes with order-one scaled wavenumbers in flows characterized by
high Görtler numbers, it is found that they develop over short streamwise lengthscales
and they are governed by an inviscid equation, Dando & Seddougui (1991). Details
of the solution of this equation for this problem are included in Owen et al. (1997),
incorporating both the conventional and thermal modes. We consider perturbations
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of the form

(U,G1/2V ,G1/2W,GP ,T ) exp

(∫ x

G1/2(β̂(X) + G−1/2β̂1(X) + · · ·) dX + iaz

)
,

and we combine the resulting equations to obtain

d2V

dη2
− 2T̄ ′

T̄

dV

dη
+

[
−a2T̄ 2 − ū′′

ū
+

2T̄ ′

T̄

ū′

ū
+
a2χ̃

β2

(
T̄ ū′

ū
− T̄ ′

2

)]
V = 0, (3)

subject to the boundary conditions V (±∞)→ 0. In (3) we have introduced β = β̂x1/4

/|χ|1/2, a is the local wavenumber and χ̃ = sgn(χ). We take χ̃ = 1 to represent
concave curvatures and conversely χ̃ = −1 to represent convex curvatures. We can
solve the eigenvalue problem (3) numerically (two representative cases are shown
in figure 2), and for each of the flows the growth rate β increases monotonically
with wavenumber from zero (which is the effectively the left-hand branch of the
neutral curve), and eventually asymptotes to a finite value. This is in contrast to
a boundary-layer calculation in which the growth rate would tend to infinity with
increasing a. Within boundary-layer problems in this limit the modes are driven to
the proximity of the solid boundary (at which the underlying streamwise velocity
is necessarily zero). Eventually for high enough wavenumbers viscosity will stabilize
these modes, Denier et al. (1991). In the calculations presented here viscosity will also
stabilize the modes although at no point is the underlying flow zero, so we will not
encounter the significantly higher growth rates. In figure 3 we show schematics of
two configurations, each containing neutral curves and representative growth rates
(shown for large Görtler numbers). In figure 3(a) we show a neutral curve in which
modes grow over extended streamwise distances, Otto et al. (1996). Notice that the
high-wavenumber limit of the inviscid modes and the low-wavenumber limit of the
viscous modes match directly as observed in Taylor problems, Otto & Bassom (1994).
In order to determine the growth rate of inviscid modes the numerical solution of
the eigenvalue problem (3) is required (as shown in figure 2). Within the intermediate
matching régime and for the viscous mode analytical expressions are available to
determine the mode growth rates. By considering the intermediate modes we are
able to determine the maximum growth rate for modes within high Görtler number
situations. If this maximum is negative we find that the neutral curve is closed (as
can be seen by extrapolating from figure 3b). We shall derive the condition that
this maximal growth rate is zero in due course, and we note that this coincides with
parameter choices for which the location of the right-hand branch tends to zero. First,
we consider the high-wavenumber limit of the inviscid modes, referred to herein as
the intermediate matching régime.

It is well known that the highest growth rate is given by consideration of the
large-wavenumber limit of the inviscid Görtler problem, see Denier et al. (1991) for
boundary layers and Otto et al. (1996) for mixing layers. We shall thus repeat and
extend the analysis presented in Owen et al. (1997) which describes the solutions of
(3) for a� 1.

We note that as the wavenumber increases the modes become localized, at η0 say,
and we consider a new variable such that η = η0 + a−1/2ζ. We also expand the growth
rate β as β0 + a−1/2β1 · · · . At leading order we find that

β2
0

χ̃
=

1

T̄ 2
0

(
T̄0ū1

ū0

− T̄1

2

)
= h(η0), (4)
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Figure 2. Growth rates for the first three modes for concave and convex curvatures for a mixing
layer characterized by βu = 3/2 and βt = 5/2 (M∞ = 0 and σ = 1). These results were obtained
using a global eigenvalue solver. Note that as a increases the growth rate asymptotes monotonically
to a finite limit.
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Figure 3. Schematic of (a) the neutral curve and growth rates for a flow which is unstable to a wide
range of wavenumbers and (b) a neutral curve for which there is only transient growth. The growth
rate is shown as a function of the wavenumber for a large value of the Görtler number represented
by the horizontal dashed line.

where the .̄j denotes the jth term in the Taylor-series expansion at η0. We note that
the expression for β2

0 can be written as the first term in the Taylor series of

χ̃ρ̄1/2

ū

∂

∂η
[(ρ̄ū2)1/2];

thus the condition for instability is unsurprisingly given by Rayleigh’s circulation
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criterion. The location of the modes is determined as being the point at which the
rate of change of circulation achieves an extremum. Accordingly the conditions that
we shall derive reflect the occurrence of these points. Note that if the circulation is
purely increasing then modes will only occur in the concave case and if it is wholly
decreasing then they will only arise in the convex problem. We also note that we can
write (3) as a Sturm–Liouville equation, namely

d

dη

(
1

T̄ 2

dV

dη

)
+

[
1

β2

{
a2χ̃

T̄ 2

(
T̄ ū′

ū
− T̄ ′

2

)}
−
{
a2 +

1

ū

d

dη

(
ū′

T̄ 2

)}]
V = 0,

where we introduce

k(η) =
1

T̄ 2
, g(η) =

a2χ̃

T̄ 2

(
T̄ ū′

ū
− T̄ ′

2

)
, l(η) = a2 +

1

ū

d

dη

(
ū′

T̄ 2

)
,

Synge (1933). We can now infer properties of the eigenvalues of the problem from the
structure of the known functions k(η), g(η) and l(η). We notice that provided l(η) > 0
for all values of η, 1/β2 must have the same sign as g(η) (notice that this is equal
to a2χ̃h(η)), again provided this has one sign, Ince (1927). This powerful result can
be used to show that the findings for a � 1 will actually be valid provided l(η) > 0
(which is obviously so for a� 1). The condition that l(η) is positive for all values of
η yields a lower limit for the values of the wavenumber at which one can expect these
conclusions to hold. Below this value it is possible that growth may be observed:
despite g(η) being negative, β2 may take positive values. For example, for βt = 3 and
βu = 3/2 this bound is around a = 0.22. It should be noted that there do not appear
to be any unstable modes below this bound; we merely wish to state the possibility
of their existence.

At this stage the location of the modes, η0, remains undetermined; however we
note that it will be found in order to maximize β2

0 (a condition which is found at
next order). It is instructive to produce plots of h(η0) = β2

0/χ̃ for a variety of values
of βt, the free-stream temperature ratio, figure 4. For βt < 1 there is only one turning
point and as βt decreases the location of the modes tends towards the cooler upper
stream, and it may be pertinent to study the small-βt limit using methods similar to
those given in Elliott & Bassom (2000).

As a brief aside we note that as βt decreases the growth rate increases significantly,
see figure 4(a). In fact we can show this via analytic consideration of the hyperbolic
tangent profile (see the footnote in § 2.1). We note that as βt → 0 the second term in
(4) will dominate and hence we consider this part’s extremum. The relevant maximum
occurs at

η0 ∼ tanh−1

{
βt + 1− 2

√
1− βt + β2

t

βt − 1

}
, (5)

which implies that

β2
0

χ̃
∼ β2

t + 1− (1 + βt)
√

1− βt + β2
t

(βt − 1)(βt + 1−√1− βt + β2
t )

3
. (6)

This asymptotes to (4/27)β−2
t as βt → 0 (note that we need to use the Howarth–

Dorodnitsyn transformation on (4) to get this result). This agrees well with results
given in figure 4(a) despite the use of the hyperbolic tangent profile (βt = 1/4 implies
η0 ≈ 0.94 and β2

0/χ̃ ≈ 2.02). It is easy to show that for any profile β0 = O(β−1
t ) as

βt → 0 for concave problems (χ̃ = 1).
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Figure 4. (a, b) The variation of the function h(η0) across the mixing layer for a variety of
free-stream temperature ratios, βu = 3/2, M−∞ = 0, σ = 1 and χ̃ = 1.

At the next order we find that β1 = 0 and

−T̄0T̄1ū0ū1 + T̄ 2
1 ū

2
0 + T̄ 2

0 ū0ū2 − T̄ 2
0 ū

2
1 − 1

2
T̄0T̄2ū

2
0 = 0,

which is the condition that η0 is at a turning point of h(η0). For βt > 1 given in
figure 4(b) the choice χ̃ = −1 means that the turning point around η0 ∼ −2 actually
represents unstable modes, although they may have smaller growth rates than the
corresponding concave problems. As βt →∞ we find that the expressions for η0 and
β2

0/χ̃ again hold, namely (5) and (6) (due to the fact that the same term dominates);

however now η0 ∼ tanh−1(−1 + β−1
t ) and β2

0/χ̃→ −4/27 + (2/27)β−1
t .
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Finally at third order we find that

d2V0

dζ2
+

{
ζ2

[
−(T̄0T̄2 + T̄ 2

1 ) +
χ̃

β2
0

(
1

2ū0

[T̄0ū3 + 2T̄1ū2 + T̄2ū1]

− ū1

ū2
0

[T̄1ū1 + T̄0ū2] +
T̄0ū1

ū0

[
ū2

1

ū2
0

− ū2

2

]
− T̄3

4

)]
− 2T̄ 2

0

β2

β0

}
V0 = 0, (7)

which is given slightly incorrectly in Owen et al. (1997). By a simple transformation
we find that this equation can be solved in terms of parabolic cylinder functions.
As mentioned earlier we note that as the wavenumber increases the viscous terms
will eventually come into play, and this then matches directly the corresponding
calculation presented later in this section. For a given profile we can determine the
likely location of the most unstable modes and their growth rates. It is now possible
to make global conclusions concerning the stability of the flow using the function
h(η0).

3.2. Derivation of the parameter ranges for concave and convex configurations

As mentioned previously it is possible to determine the level of instability by consider-
ing the asymptotic limit a� 1 in the inviscid Görtler problem (which is synonomous
with the small-wavenumber limit of the right-hand branch problem discussed in § 3.3).
We make the supposition that if modes in this régime are stable then the neutral
curve will pinch and it will not be possible to observe sustained streamwise growth,
see figure 3. We draw analogies with the inviscid stability or otherwise of a boundary
layer. As the Reynolds number tends to infinity the upper and lower branches of the
Orr–Sommerfeld curve will remain distinct for an inflectional profile, whereas for an
inviscidly stable flow they will eventually merge and the curve will pinch.

We now consider the expression (4) which effectively allows us to determine the
growth rate as a function of η0. At the next order we determine η0 such that ∂h/∂η0

is zero, which yields modes with growth rates

β0 =
√
χ̃h(η) evaluated at η = η0 such that ∂h/∂η = 0 at η = η0.

For growing modes we require that β0 is real and consequently χ̃h(η0) must be positive.
In order that the flow is susceptible both to thermal and conventional modes

we note that h(η0) must have exactly two turning points (the positive maximum
corresponding to the conventional modes and the negative minimum corresponding
to the thermal modes). Since the function is zero at plus and minus infinity there must
be a further intermediate zero (if the function is to have exactly two turning points).
We consider the case of σ = 1, in which case the temperature is given directly from
enthalpy considerations. The zero of h then occurs where

ū = 2

(
βu − βt +M2−∞(γ − 1)βu(1− βu)/2

1− βt +M2−∞(γ − 1)(1− β2
u )/2

)
.

We shall now comment on the location of this zero, and note that unless the corre-
sponding value of ū lies between 1 and βu the function h will not have any isolated
zeros. This means that it only has one turning point and the flow is only unstable in
one of the curvature configurations. In figure 5 we show a schematic of the variation
of ū|h(η)=0 against βt for M−∞ = 0. For βt < 1 there is one branch and this starts for
βt ∼ 0 at ū = 2βu and increases monotonically: this means that h(η) is never zero,
and immediately h(η) has only one sign (in fact it is positive). For βt > 1 the situation
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Figure 5. The value of ū at the zero of h(η) (for M−∞ = 0), as a function of the temperature ratio
βt. The box shows the range 1 < ū < βu, which corresponds to η ∈ [−∞,∞]. Below the shaded box
the zero of the function lies beyond η = −∞ (ū = 1) and above it corresponds to a zero beyond the
upper limit of the mixing layer. The values of βt at the lower and upper intersection of the curve

and the box are β(A)
t and β(B)

t respectively.

is more complicated. In the interval 1 < βt < β
(A)
t the zero of h(η) lies beyond the

lower bound of the mixing layer and again h(η) has only one sign (implying that

only concave configurations are unstable). In the range β(A)
t < βt < β

(B)
t , h(η) has

a zero and hence both configurations are unstable. As βt increases above β(B)
t the

zero moves beyond the upper extreme of the mixing layer and again the function
h(η) has only one sign (which is now negative). As βt → ∞ we note that the curve
asymptotes to ū|h(η)=0 = 2, hence for βu < 2 the value of β(B)

t is finite, whereas if
βu > 2 the box would extend vertically beyond the asymptote and the modes in
concave configurations would remain unstable for all values of βt greater than β

(A)
t .

For general Mach numbers the values of βt at these intersections are

β
(A)
t = 2βu − 1− (γ − 1)

2
M2
−∞(1− βu)2 (8a)

and

β
(B)
t =

βu

2− βu
{

1 +
(γ − 1)

2
M2
−∞(1− βu)2

}
. (8b)

With the non-dimensionalization used in Owen et al. (1997) this yields the cut-off
βt < 1/3 as shown in figure 19 of that paper and also the condition βt > 3 shown here
in figure 6 for the existence of the thermal modes, for M−∞ = 0. It is worth noting
that our argument is independent of the model used for the basic flow (provided that
∂ū/∂y does not have any isolated zeros, Zhuang 1999). It is also noted that similar
behaviour will occur for Prandtl numbers other than unity. For Prandtl numbers
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close to unity (and for M−∞ = 0) we expand T̄ in powers of (σ − 1) to find

T̄ = 1 +

(
βt − 1

βu − 1

)
(ū− 1) + (σ − 1)

βt − 1

(βu − 1)2

[
(βu − 1)

[
f′ ln f′′ +

f2

4

]η
−∞

−(ū− 1)

[
f′ ln f′′ +

f2

4

]∞
−∞

]
+ O((σ − 1)2),

where f(η) is the solution of (1). The second term requires knowledge of the behaviour
of f(η) at ±∞, which is a relatively straightforward exercise. We can show that if
σ 6= 1 then thermal modes arise when βt > 1, as shown in figure 6. In order to place
an upper bound on the range of βt for which conventional modes exist further terms
need to be taken in the above series.

We now comment on the growth rates for βu = 3/2 (figure 4a) for both χ̃ = 1
and χ̃ = −1; this quite clearly shows the cut-out (that is the point above which
conventional modes do not exist) predicted via the above argument. This cut-out
corresponds to β

(B)
t = 3 = βu/(2 − βu) (for σ = 1, M−∞ = 0 and βu = 3/2); for

βt = 5/2 we see two turning points and for βt = 4, h(η0) is purely negative, hence all
conventional modes are extinguished (at most we will observe transient growth in § 4
for these parameters, Otto et al. 1996).

In summary, via the analysis presented in this section it is possible to determine
whether a situation characterized by the values of βu, βt and Mach number will be
prone to centrifugal modes for concave, convex or both curvatures. We now give the
values of βt for the three cases: for 1 < βu < 2 we find that

βt < 2βu − 1− (γ − 1)

2
M2
−∞(1− βu)2

concave unstable,

2βu − 1− (γ − 1)

2
M2
−∞(1− βu)2 < βt <

βu

2− βu
{

1 +
(γ − 1)

2
M2
−∞(1− βu)2

}
both unstable,

βu

2− βu
{

1 +
(γ − 1)

2
M2
−∞(1− βu)2

}
< βt

convex unstable, (9)

with similar results for βu > 2, although there is no upper bound of βt for concave
situations to be unstable.

It is easy to use a similar analysis to show that no degree of wall cooling will
permit sustained growth of centrifugal modes in boundary layers over convex curved
plates.

3.3. Viscous Görtler modes

The second régime corresponds to points in the neighbourhood of the right-hand
branch of the neutral curve, that is where modes will eventually become stable again
as they progress downstream. In this régime the viscous terms come into play and
the asymptotic location of the right-hand branch can be determined. As mentioned
previously there is a direct matching between these two régimes in mixing-layer
calculations, unlike the case of Görtler vortices within boundary layers, Denier et al.
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(1991). On the right-hand branch of the neutral curve G ∼ a4 (with λ̂ = aG1/4) and
the modes are again localized in a narrow layer of width a−1/2 situated at η̄, which
will be determined in due course. Again in this range the growth rate is of order G1/2.

We now show the asymptotic analysis for the right-hand branch structure. First, we
shall consider the right-hand branch with a view to predicting the kind of behaviour
we expect to see via our numerical calculations. We shall proceed with the analysis
for non-neutral modes, but will concentrate on neutral disturbances (the growth rate
is retained to aid matching with the inviscid calculations). From this we will obtain
an expansion of the neutral Görtler number in terms of the neutral wavenumber by
setting the growth rate to be zero. We expand the Görtler number as

G = a4(G0 + a−1/2G1 + a−1G2 + · · ·),
and consider the solutions within a narrow layer of vortex activity where η =
η̄+a−1/2ξ. The vortex quantities are expanded in the form ũ(x, η) = [ũ0(ξ)+a−1/2ũ1(ξ)+
· · ·]E, with similar expansions for a−2ṽ(x, η), a−3/2w̃(x, η), a−5/2p̃(x, η) and T̃ (x, η). Here
we have defined E as

E = exp

[
a2

∫ x

(β0 + a−1/2β1 + · · ·) dx

]
.

We consider steady modes since these are known to be the most unstable within
two-dimensional flows, Otto & Denier (1994). We now expand the basic flow as a
Taylor-series expansion about η = η̄, to give ū = ū0(x)+a−1/2ξū1(x)+ · · ·, with similar
expansions for v̄ and T̄ .

These expansions can now be substituted into the disturbance equations (2). We
equate like powers of a, and at leading order the expressions obtained from the
streamwise-momentum, energy and normal-momentum equations are found to be

−T̄0ũ0λ̂
2 =

ṽ0ū1

T̄0

+
ū0β0ũ0

T̄0

, − 1

σ
T̄0T̃0λ̂

2 =
ṽ0T̄1

T̄0

+
ū0β0T̃0

T̄0

,

−T̄0ṽ0λ̂
2 = G0χφ0ũ0 − G0χ

2
θ0T̃0 +

ū0β0ṽ0

T̄0

,

 (10)

where we have introduced the functions φ(η) and θ(η) as ū/T̄ and (ū/T̄ )2 respectively
(φj and θj are the jth terms in their respective Taylor-series expansions at η̄).

Note that the equations (10) do not contain any derivatives of the vortex terms
and these are combined to obtain a compatibility condition

T̄0λ̂
4 = G0χφ0

ū1

T̄ 2
0

− G0χ

2
θ0

T̄1σ

T̄ 2
0

. (11)

This expression yields a condition for the existence of the vortices, and can be used to
determine where the instabilities are most likely to occur. We have considered β0 = 0
in order to make predictions concerning neutral modes. Alternatively, considering

λ̂ → 0 in (10) requires that β0 tends to the limit predicted by the large-wavenumber
limit of the inviscid problem given in equation (4), hence limλ̂→0 η̄ = η0. We now
proceed with β1 and β2 both set equal to zero.

At next order we have equations which can be combined to obtain an expression
purely involving the disturbance quantities ṽ0 and ṽ1. We find that the coefficient of
ṽ1 is merely the leading-order compatibility relation (11), which is already satisfied.
Considering terms multiplied by ṽ0 we find that G1 = 0; notice that this is only true
because we are considering neutral disturbances (β1 = 0). The terms multiplying ṽ0ξ
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yield

λ̂4T̄1 = G0χ

(
φ1ū1

T̄ 2
0

− 2φ0

T̄1ū1

T̄ 3
0

+ φ0

ū2

T̄ 2
0

)
− G0χσ

2

(
θ1T̄1

T̄ 2
0

− 2θ0

T̄ 2
1

T̄ 3
0

+ θ0

T̄2

T̄ 2
0

)
. (12)

This expression can also be obtained by ‘Taylor expanding’ the leading-order com-
patibility relation, and this serves as a check. This condition corresponds to ensuring
that when G0 is obtained from (11) it is at a turning point; that is, we have identified
the smallest value of G0 for this situation at which vortices can arise. Intrinsic to
(11) we find a condition which will lead to an expression similar to (9). Hence the
conclusions given for the ranges of βt unsurprisingly also pertain to the right-hand
branch régime. This means that a decrease in growth rate is allied to a contraction of
the neutral curve, refer to figure 3(b).

At third order we find that the viscous terms come into play. The equations can be
combined, and making use of the first two compatibility conditions, we find that

3T̄0

∂2ṽ0

∂ξ2
+ ξ2Aṽ0 +

G2

G0

T̄0λ̂
2ṽ0 = 0,

the solution of which can be written in terms of parabolic cylinder functions; conse-
quently we require

G2 =
3G0

λ̂2

(
−4A

3T̄0

)1/2

(m+ 1
2
),

where m is zero or a positive integer so that the solutions remain confined within the
narrow shear layer. The coefficient A is given by

A = − λ̂
2T̄2

2
+ G0χ

[
φ2ū1
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− 2
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1
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)]
.

It is noted that A is the local expansion of the second derivative of (11) with respect
to η. This quantity is taken to be a maximum for a positive curvature (concave) and
a minimum for negative curvature (convex). This implies that A is always negative
with the requisite choice of the sign of χ (that is χ̃).

Defining the local Görtler number and wavenumber as in § 2.3 we have the first
two terms in the local Görtler number expansion as

Gx = a4
xG0

[
1 + a−1

x

3

λ̂2

(
− 4A

3T̄0

)1/2 (
m+ 1

2

)
+ · · ·

]
, (13)

which is the compressible analogue of the expression given in Hall (1983). Hall notes
that in order to obtain the next term in the expansion one is required to incorporate
non-parallel terms.
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The first two conditions, namely (11) and (12), can be used to determine the
Görtler number G0 and the mode location η̄. These conditions have been used
in Wadey (1991) and Owen et al. (1998) to predict the onset of nonlinear vortex
structures. In the asymptote (13) we take m = 0, which corresponds to the first mode.
It is noted that Gx increases as m increases, implying that the higher modes are more
stable.

The location of the right-hand branch is a good indication of the level of instability:
as the right-hand branch moves to the right more wavenumbers are unstable for
greater distances downstream. In contrast, for some cases the right-hand branch
moves so far to the left that the neutral curve pinches. In these cases we would only
expect to observe transient growth, see for instance the modes found in Otto et al.
(1996) for convex curved mixing layers, see figure 3(b). It is well known that on the

right-hand branch of the neutral curve G ∼ a4 (for χ ∼ √x), where the value of λ̂

determines the multiplicative constant. In figure 6 we show how the value of λ̂ varies
as βt changes for neutral modes. The curves shown are for βu = 3/2 and M−∞ = 0
(similar results are obtained for other values). For χ̃ = −1, which corresponds to
convex curvature, as the relative temperature of the faster stream decreases the

location of the right-hand branch moves to the left (i.e. λ̂→ 0) until the neutral curve
eventually pinches (at βt = 2 = 2βu − 1 for σ = 1) as predicted via (9). The location
of the right-hand branch for the compressible counterparts of the modes found in
Otto et al. (1996) is labelled ‘conventional modes’. If χ̃ = 1 we observe conventional
modes but only for βt < 3 (for σ = 1). It is seen that for a Prandtl number of 0.72
even though the bounds of the inequality are modified, the conclusions remain largely
unchanged. As βt decreases here, that is the faster stream decreases in temperature,
more modes become unstable. We show the effect of changing Mach number on the
location of the right-hand branch in figure 7 for conventional modes. The curves
show that as the Mach number increases the right-hand branch moves slightly to
the left (shown as a decrease in the neutral wavenumber). It can be seen in this and
the previous figure that as βt decreases for the conventional modes the right-hand
branch of the neutral curve moves to the right quite dramatically, refer to figure 11.
It appears that these modes will operate over a wider range of wavenumbers and be
more unstable than their counterparts in uncooled situations.

4. Results from the numerical solutions of equations (2)
We now discuss the results obtained from the numerical calculations for different

parameter choices, and make comparisons with the right-hand-branch asymptotic
theory presented in the previous section. In this section we shall mainly be concerned
with the shape of the neutral curves; however we note that it is also necessary to
consider the growth rates of the modes. Interestingly, via the analysis of the previous
section and the direct calculations we find that an enlarging of the neutral curves is
accompanied by an increase in growth rate. Hence modes are more unstable as well
as persisting over a wider parameter régime, and vice versa for contracting neutral
curves.

All perturbations are imposed at x̄ = 20, unless otherwise stated. This is a position
where the basic flow is assumed to be fully developed. In Hall (1983), the neutral
curves shared the same right-hand branch for different values of x̄, but with distinct
left-hand branches. In the mixing-layer problem, none of the neutral curves actually
cross each other, but a neutral curve will lie inside one that has a smaller value of
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Figure 6. The asymptotic location of the right-hand branch as a function of βt with the cut-outs
as predicted using (9) for the maximum growth rate (with M−∞ = 0 and βu = 3/2). Note that the
tending to zero of the neutral wavenumber corresponds to a pinching of the neutral curve, whereas
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Figure 7. The asymptotic location of the right-hand branch as a function of Mach number,
σ = 0.72, βu = 3/2, χ̃ = 1.

x̄. This can be seen for the incompressible problem in figure 8. We choose x̄ = 20
from consideration of Otto et al. (1996), so that the validity of our results can be
checked in the incompressible limit, M−∞ = 0. We also have taken the curvature to
be
√
x/x̄ in most calculations, although in figure 9 we plot neutral curves for two
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Figure 8. Neutral curves for x̄ = 20, 40, 60 with G = 1/20, M−∞ = 0, βu = 2, βt = 1.

different curvatures. It can be seen that for a constant curvature of χ = 1, the base
of the neutral curve is lower than for a curvature of χ =

√
x/x̄. Also the right-hand

branches cross for these two curvatures. The effect of changing βu was shown in
Otto et al. (1996) to be that an increase renders the flow more unstable. We use a
Görtler number of 1/20; this is not particularly significant but is chosen so that there
is a reasonable streamwise distance until the modes start to grow. Increasing and
decreasing the Görtler number has the simple effect of enhancing or inhibiting the
instability mechanism, both in terms of growth rate and distance before they start to
grow.

We now turn our attention to the effect of the Mach number on the stability of
the flow. In § 3.2 we see that, via (11) and (12), we can predict that an increase in
M−∞ brings about a decrease of instability, that is a smaller range of wavenumbers
is unstable. This can be seen in figure 7. Interpreting these results, we expect that the
right-hand branch of the neutral curve should move subtly to the left with an increase
in Mach number. In figure 10 we give neutral curves corresponding to conventional
Görtler modes where this result is found. The results suggest that in this case, the
effect of compressibility is to stabilize the flow. Also plotted on the figure is the
two-term asymptote calculated using equation (13), for the case M−∞ = 2/5. The
agreement for this case is good, as has been found for the other cases, although for
clarity these asymptotes have been omitted.

Next, we consider the effect of changing βt, the temperature of the upper faster
stream (recall that in this study, the lower stream has non-dimensional velocity and
temperature equal to unity). Again we can predict the location of the right-hand
branch using the asymptotic methods presented in § 3. For χ̃ = 1, that is the centreline
curves towards the faster stream, we find that a decrease in βt increases the range
of wavenumbers for which growing modes can be found. In figure 11 we show four
neutral curves; the most unstable case shown corresponds to βt = 1/2. For smaller
values of βt the right-hand branch would appear even further to the right. It seems
that only a slight change in βt will dramatically change the stability of the flow. Again
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Figure 9. Neutral curves for χ = 1 and χ = (x/x̄)1/2 with G = 1/20, M−∞ = 0.4, βu = 2, βt = 1.
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Figure 10. Neutral curves for G = 1/20 for different values of the Mach number with βt = 1.

equation (13) has been used to calculate an asymptote for the case βt = 1/2 and
reasonable agreement is found. It is expected that higher terms in the expansion will
yield closer results. The aim here is to ascertain that the numerical results are close
to the analytical findings, and this is found to be the case. It is also noted that at the
next order in the asymptotic approximation, non-parallel flow effects start to enter
the solution.

We now turn our attention to modes within mixing layers where the curvature
is away from the faster stream (χ̃ = −1). From figure 6 we see that unless βt is
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Figure 11. Neutral curves for G = 1/20, showing a variety of values of temperature ratios with
M−∞ = 2/5 and βu = 2.
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Figure 12. Neutral curves for G = 1/20 with χ̃ = −1, showing a variety of values of temperature
ratio with M−∞ = 2/5 and βu = 2 (σ = 0.72) (the neutral curve for βt = 1 and χ̃ = 1 is included for
comparison).

greater than 3 the majority of modes will be stable downstream (for σ = 1, βu = 3/2,
M−∞ = 0). Neutral curves for two values of βt are shown in figure 12 (with the
G = 1/20, βt = 1 case included for comparison). For βt = 3 the right-hand branch
has been pushed to the left so that there is only transient growth, cf. figure 6. Even
for βt = 5 the right-hand branch is still not very far to the right. These modes have
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Figure 13. Growth rates shown for a variety of situations, M−∞ = 2/5, βu = 2,
a = 1/20 and G = 1/20.

no counterpart in the incompressible problem, and again it is seen that the disparity
in temperatures between the two streams plays an important rôle in determining the
stability of the centrifugal modes.

In figure 13 we show the growth rates for a = 1/20 for a variety of cases. Note that
the two curves corresponding to βt = 5 show very different behaviour: far downstream
the modes become stable where the layer curves into the faster stream (χ̃ = 1), which
is not true for curvature in the other sense (χ̃ = −1). The growth rates in figure 14 are
shown for an optimal wavenumber for the flow situation; the optimal wavenumber
is defined by the mode with the maximum sustained growth rate. It is seen that as βt
decreases, the maximum growth rate increases, as suggested by the analysis given in § 3.

We now recall that for βu < 2 there will be a finite range of βt for which conventional
modes operate. From figure 15, with βu = 3/2 we notice that for βt = 2 the neutral
curve has an open right-hand branch. For the case βt = 4 we see that the right-hand
branch is folding over, as was seen for the thermal modes for σ = 1 (figure 12); this
corresponds to only transient growth. In such cases, the mode growth rate becomes
positive only for very short streamwise distances. It is then seen that the inequalities
presented in the previous section allow us to glean information as to whether a flow
will support centrifugal instabilities. In figure 15 we also include neutral curves for
σ = 0.72; as suggested by figure 6 these lie further to the right than those with unity
Prandtl numbers. Notice in particular for βt = 4 the contrast between σ = 1 and
σ = 0.72, cf. figure 6.

In figure 16 we see the effect of changing the initial conditions. The lower curve uses
the initial conditions given previously withM = 0, that is with no initial temperature
perturbation, and the upper curve uses the initial conditions withM = 1. The cases in
between are for M = 1/2, M = 3/4 and M = 9/10. For the case M = 1, the neutral
curve doubles back on itself. It asymptotes to the same right-hand branch as theM = 0
case, as expected. It is also seen that as the value ofM is increased, the ‘kink’ becomes
more pronounced. This effect is largely a transient due to the initial conditions.
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Figure 15. Neutral curves for βu = 3/2, M−∞ = 0, G = 1/20.

5. Conclusions
In this paper it has been shown that centrifugal instabilities can exist in curved

compressible mixing layers. The work here agrees in the incompressible limit with Otto
et al. (1996). Effects such as change in curvature or ratio of the free-stream velocities
are largely found to have similar ramifications when the flow is compressible. The
compressibility of the flow also introduces parameters that have been seen to alter
the flow’s susceptibility to centrifugal instabilities. In the main we require the slower
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Figure 16. Neutral curves for M = 0, 1/2, 3/4, 9/10, 1(upper curve), for M−∞ = 2/5,
βt = 1 and G = 1/20.

stream to curve into the faster stream to generate streamwise vorticity; however if
the faster stream curves into a cooler slower stream then centrifugal instabilities are
also likely to be observed. These modes were first described in Owen et al. (1997)
and here we have obtained them using a full numerical calculation. We have also
been able to determine a measure of the ranges of parameters over which one would
expect to observe them. This range was predicted using an asymptotic limit of the
governing equations and was seen to accurately determine what was observed via
our direct calculations. This method of predicting ranges for which one would expect
to observe sustained growth of this class of modes also allows us to make some
comments concerning the effect of other parameters. In (9) we give ranges of free-
stream temperature ratios for which both thermal and conventional modes persist;
from this we can infer that as the Mach number of the lower stream increases,
the value of the temperature ratio at which thermal modes occur decreases thus
rendering the situation more unstable to these modes. In fact an increase in Mach
number increases the maximum growth rate of the thermal modes, but only very
slightly. In the main however, the variation of the Mach number is seen to have a
similar effect to that in most other compressible flows, that is an increase in Mach
number tends to produce a stabilizing influence, Wadey (1992). Another result we
note concerning the variation of the free-stream temperature ratio, βt, is that for the
concave case (χ̃ = 1) the growth rate is of order β−1

t as the upper stream decreases in
temperature (which is significant). For the convex case (χ̃ = −1) as the temperature
of the upper stream increases the growth rate tends to a constant. Both these results
are largely independent of the free-stream velocity ratios. It is also worth noting
the significant rôle of the Prandtl number, for instance in determining the minimum
temperature ratio at which the thermal modes are likely to arise. In problems with
different Prandtl numbers the ranges at which these modes operate are likely to be
significantly modified.



386 J. M. Sarkies and S. R. Otto

It has been shown that conventional Görtler modes in a situation with a cooler
faster stream are more unstable than their counterparts in uncooled situations, and
persist over a larger range of wavenumbers. Again using the inequalities (9) we
can show that for free-stream speed ratios less than two there is an upper bound
of free-stream temperature ratios for which conventional modes may be sustained.
The numerical results have been checked via an asymptotic analysis, which predicts
the location of the right-hand branch of the neutral curve and the variation of the
maximum growth rate.

In summary we can use the expression (4) to draw conclusions on the fate of
centrifugal modes. If the curvature is concave (χ̃ = 1) then we require that the
combination (T0u1 − T1u0/2) is positive. The effect of a larger velocity gradient will
be diminished as the temperature gradient becomes large and positive. Alternatively,
for βt < 1 the temperature gradient will be negative, and the velocity and temperature
gradients will both augment the growth rate in a constructive way. For the convex
case we require that the temperature gradient is large and positive (βt > 1), but
as the magnitude of the velocity gradient increases these modes will gradually be
extinguished.

Other results such as a change in curvature of the layer are seen to agree with
the findings of Otto et al. (1996). A change in initial streamwise location of the
disturbance was also investigated, and it was seen that the base of the neutral curve
was altered although the right-hand branches merged as expected. If there is an
initial temperature perturbation then there is a kink in the neutral curve for the case
considered here, refer to figure 16.

Perhaps the most interesting point raised by this work is the possible effect of
Görtler vortices on the intrinsic inviscid modes; Owen et al. (1998). Since the un-
derlying flow now varies with y and z we would need to solve a two-dimensional
eigenproblem, as derived in Hall & Smith (1991). In Hu et al. (1994) and Liou (1994) it
is noted that the presence of curvature has a minimal effect directly on the inflectional
modes. However, in Otto (1995) it was shown that as the amplitude of the Görtler
vortices in pressure-gradient-driven flows increased, the intrinsic Rayleigh modes were
further destabilized. In Seddougui & Otto (1995) and Owen et al. (1998) it has been
observed that for nonlinear vortices in the neighbourhood of the right-hand branch,
the presence of the vortices serves to reduce the growth rates of the inherent inviscid
instabilities for the case of a slower flow curving into a faster one. However, for the
thermal modes Owen et al. (1998) observed a destabilization of the inviscid modes, as
also observed in boundary layers in Otto (1995). The solution of the incompressible
version of the two-dimensional Rayleigh equation was discussed in Hall & Horseman
(1991) and Otto & Denier (1993) for Görtler vortices within boundary layers. The
solution of the corresponding mixing-layer problem is presented in Otto et al. (2000).

Other work that this study might lead to includes the nonlinear evolution of the
modes, in the fashion of Hall (1988). This will allow us to more accurately predict
the fate of Görtler vortices and inviscid instabilities within curved mixing layers, and
consequently determine their influence on mixing properties.
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